
Package ‘FKmL’
July 2, 2025

Title Fréchet Distance-Based K-Means and Extensions for Longitudinal
Data

Version 0.1.1

Description Implements shape-based clustering algorithms for multidimensional longitudi-
nal data based on the Fréchet distance. It implements two main methods: MFKmL (Multidimen-
sional Fréchet distance-based K-means for Longitudinal data), an extension of the K-means algo-
rithm using the Fréchet distance originally developed in the 'kmlShape' pack-
age, adapted for multidimensional trajectories; and SFKmL (Sparse multidimen-
sional Fréchet distance-based K-medoids for Longitudinal data), a K-medoids-based cluster-
ing algorithm that incorporates variable selection. These tools are designed to enhance cluster-
ing performance in high-dimensional longitudinal data settings, particularly those with time de-
lays, variations in trajectory speed, irregular sampling intervals, and noise. This package imple-
ments methods derived from Kang et al. (2023) <doi:10.1007/s11222-023-10237-z>.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.2

Imports dplyr, ggplot2, proxy, abind

Depends R (>= 4.3)

NeedsCompilation no

Author Ji Hyun Park [aut, cre],
Soon-Sun Kwon [aut],
Ilsuk Kang [aut, ctb]

Maintainer Ji Hyun Park <jhn1105@gmail.com>

Repository CRAN

Date/Publication 2025-07-02 15:00:03 UTC

Contents
dist.array . 2
fredist . 3
mfkml . 4
SFclust . 6
SFclust.permute . 7

1

https://doi.org/10.1007/s11222-023-10237-z

2 dist.array

Index 9

dist.array Compute Distance Array for Multidimensional Functional Data

Description

This function standardizes multidimensional functional data using provided scaling factors, com-
putes pairwise Fréchet distances between trajectories for each variable, and returns a distance array
(3-dimensional array of distance matrices).

Usage

dist.array(dt, time_scale, var_scales)

Arguments

dt A long-format data.frame containing the following columns in the specified or-
der:

• ID: An identifier for each trajectory.
• Time: The time points at which measurements were recorded (numeric or

integer vector).
• Variable1, Variable2, ... : The measured variables over time (numeric

values). The data.frame should not include any missing values. See ’De-
tails’ for structure requirements.

time_scale A single numeric value used to scale the Time column. This ensures that time is
appropriately weighted relative to the variables.

var_scales A numeric vector of scaling factors for the measured variables. Its length must
be equal to ncol(dt) - 2.

Details

The dist.array function first applies scaling to the Time and each measured variable. Then, it
computes pairwise Fréchet distances between trajectories for each variable separately. The output
is a 3-dimensional array in which each slice corresponds to a variable-specific distance matrix.

Unlike the mfkml function, which requires at least three measurements across time for each trajec-
tory, the SFKmL ((Sparse multi-dimensional Fréchet distance-based K-medoids for Longitudinal
data), which uses dist.array, allows for trajectories with missing values, as long as each variable
has at least three time points for each trajectory. Therefore, dt may include missing values.

Value

A numeric value or matrix. If form = "scalar", returns the Fréchet distance between the two tra-
jectories as a single numeric value. If form = "matrix", returns the dynamic programming matrix
used to compute the distance.

A 3-dimensional array of pairwise distances with dimensions [n, n, p], where:

fredist 3

n Number of unique trajectories.

p Number of variables.

Each slice [, , k] is a distance matrix for variable k.

fredist Compute the Generalized Fréchet Distance Between Two Trajectories

Description

Calculates the discrete Fréchet distance between two trajectories, which is used as the distance
metric in clustering algorithms for longitudinal data.

Usage

fredist(traj1, traj2, form)

Arguments

traj1 A numeric matrix or data.frame representing the first trajectory. The first col-
umn must be time points, and the remaining columns should be one or more
variables observed at each time point (e.g., Variable1, Variable2, ...). Each row
corresponds to a single time point.

traj2 A numeric matrix or data.frame representing the second trajectory. The format
should be the same as for traj1, where the first column is time, and the subse-
quent columns are variables.

form A character string specifying the return format. Should be either "scalar" to
return the scalar Fréchet distance, or "matrix" to return the full dynamic pro-
gramming matrix.

Details

This function is primarily used internally by clustering functions to evaluate the similarity between
trajectories based on the Fréchet distance. It is used in the mfkml function and for generating the
distance array used in SFclust function.

Value

A numeric value or matrix. If form = "scalar", returns the Fréchet distance between the two tra-
jectories as a single numeric value. If form = "matrix", returns the dynamic programming matrix
used to compute the distance.

4 mfkml

Examples

Example trajectories with 3 variables
traj1 <- data.frame(

Time = 1:4,
Variable1 = c(1.2, 1.4, 1.6, 1.8),
Variable2 = c(2.3, 2.1, 2.0, 1.9),
Variable3 = c(3.1, 3.3, 3.5, 3.7)

)
traj2 <- data.frame(

Time = 1:3,
Variable1 = c(2.0, 2.2, 2.4),
Variable2 = c(3.0, 2.9, 2.8),
Variable3 = c(1.0, 1.1, 1.2)

)

Compute Fréchet distance (scalar output)
fredist(traj1, traj2, form = "scalar")

Compute Fréchet distance matrix
fredist(traj1, traj2, form = "matrix")

mfkml Multidimensional Fréchet Distance-Based K-means for Longitudinal
Data

Description

Extends kmlShape to multidimensional (p ≥ 2) longitudinal data. It performs scale adjustment
and trajectory alignment across all variables prior to clustering to reduce distortions caused by
differences in time grids and amplitude scales. When variables exhibit substantially different ranges,
standardization is required to prevent any single variable from disproportionately influencing the
clustering outcome.

The clustering process follows an iterative K-means framework, where cluster assignments are
updated based on Fréchet distances. Cluster centers are computed using the weighted Fréchet mean,
which accounts for variable weights assigned to individual trajectories. This allows the mean to be
adjusted according to the relative importance of each trajectory in the clustering process.

Usage

mfkml(dt, clt_n, scales, weight, maxIter = 50)

Arguments

dt A long-format data.frame containing the following columns in the specified or-
der:

• ID: An identifier for each trajectory.

mfkml 5

• Time: The time points at which measurements were recorded (numeric or
integer vector).

• Variable1, Variable2, ... : The measured variables over time (numeric
values). The data.frame should not include any missing values. See ’De-
tails’ for structure requirements.

clt_n An integer specifying the number of clusters. The number of unique trajectories
must be greater than or equal to clt_n.

scales A numeric vector used for scaling the time and variable columns. The length of
scales must be equal to ncol(dt) - 1, where each value in scales corresponds
to the scaling factor for the respective column (excluding the ID column). See
’Details’ for structure requirements.

weight Specifies the weights used for calculating the weighted Fréchet mean. It can
take one of the following forms:

• A data.frame with two columns: ID and Weight, where each Weight value
indicates the importance of the corresponding trajectory.

• A numeric value of 1, indicating equal weights for all trajectories. See
’Details’ for structure requirements.

maxIter The maximum number of iterations allowed before stopping if convergence is
not reached. The default value is 50.

Details

The input dataset (dt) must contain only numeric values (except for the ID column) and must not
include any missing values. Each variable should be measured at least three times per trajectory,
since the method relies on trajectory shapes. Two observations per trajectory are insufficient to
capture shape trends (e.g., increasing, decreasing, or stable).

Because the Fréchet distance is sensitive to measurement units, proper scaling is essential when
applying the mfkml function. The scales vector contains scaling factors for time and each vari-
able, which are used to rescale the corresponding columns. This scaling prevents distortion due to
differences in the units of time and variables, allowing for more accurate shape-based comparisons.

This function involves random sampling internally. For reproducible results, set the random seed
before calling the function using set.seed().

Value

A list with the following components:

Cluster A data.frame containing the ID and Cluster columns, which indicate the final cluster
assignment for each trajectory.

Center A data.frame representing the final cluster centers, with columns for the cluster IDs, time
points, and variable values.

Iteration The number of iterations the algorithm performed before reaching convergence.

6 SFclust

SFclust Sparse Fréchet Distance-Based K-medoids for Longitudinal Data

Description

Performs clustering on longitudinal trajectories using a sparse feature weighting scheme and Fréchet
distance. The method iteratively updates cluster assignments and feature weights subject to an ℓ1
norm constraint.

Usage

SFclust(k, l1bound, dist.ary, maxIter = 20, eps = 1e-04)

Arguments

k The number of clusters.
l1bound A bound on the ℓ1 norm for the weight updates. It must lie between 1 and the

square root of the number of variables.
dist.ary A 3-dimensional array of pairwise Fréchet distances. The array should be of

shape (n, n, p), where n is the number of trajectories and p is the number of vari-
ables. Each dist.ary[,,j] stores the pairwise distances for the j-th variable.

maxIter The maximum number of iterations before stopping if convergence is not reached.
Default is 20.

eps A small positive threshold for convergence. The algorithm stops when the
change in weights becomes smaller than this threshold. Default is 1e-4.

Details

The function assumes that the input dist.array contains pairwise distances between trajectories
for each variable, using the generalized Fréchet distance. Clustering is performed via a k-medoids
algorithm, and feature weights are updated using between-cluster sum of squares (BCSS) with
sparsity control. If the number of variables is one, only clustering is performed, and no variable
weighting is applied. This function involves random sampling internally. For reproducible results,
set the random seed before calling the function using set.seed().

Value

A list containing the following components:

clust A vector of cluster assignments for each trajectory.
final.weight The final weight vector after the last iteration, reflecting the contribution of each vari-

able to the clustering process.
weight.history A matrix of weight values at each iteration, showing how the feature weights

evolved.
criteria A vector of convergence criteria values for each iteration, quantifying the change in weights.
iteration The number of iterations performed before convergence or reaching maxIter.

SFclust.permute 7

SFclust.permute Perform Permutation-Based Clustering Evaluation for SFclust

Description

Performs a permutation-based analysis to evaluate clustering results across different values of the ℓ1
norm constraint (s). This function is designed to help determine the most appropriate ℓ1 norm value
by comparing the observed clustering outcome with those obtained under random permutations.

The function computes gap statistics for each ℓ1 norm constraint value based on permuted versions
of the input distance array, and identifies the optimal s as the one maximizing the gap statistic. Two
ggplot objects are returned to visualize the gap patterns.

Usage

SFclust.permute(dist.ary, k, nperms, l1b)

Arguments

dist.ary A 3-dimensional distance array representing pairwise distances between trajec-
tories across multiple variables. Follows the same format used in SFclust.

k An integer specifying the number of clusters.

nperms An integer specifying the number of permutations to perform.

l1b A numeric vector of ℓ1 norm constraint values to test during clustering. These
values control the sparsity of the weights during clustering.

Details

This function helps assess the robustness of clustering structure and select an optimal level of spar-
sity. If any clustering attempt fails (e.g., due to convergence issues or weight update errors), the
corresponding l1b values are reported in failed_l1b and failed_j. This function returns two
ggplot objects (gapplot.l1b and gapplot.nnz) that can be used to visualize the gap statistics.
These are not automatically printed, allowing users to decide when and how to display them. This
function involves random sampling internally. For reproducible results, set the random seed before
calling the function using set.seed().

Value

A list containing the following components:

totss A numeric vector of total within-cluster sum of squared distances for each ℓ1 norm value.

permtotss A matrix of total sum of squared distances for each permutation and each ℓ1 norm value.

nnonzerowss A numeric vector of the number of nonzero weights for each ℓ1 norm value.

gaps A numeric vector of gap statistics: the difference between observed and permuted clustering
results.

sdgaps A numeric vector of standard deviations of the gaps across permutations.

8 SFclust.permute

l1bounds A vector of ℓ1 norm constraint values that were successfully processed without error.

bestl1b The ℓ1 norm constraint value that yielded the largest gap.

failed_j Indices of l1b values that caused errors during the clustering process.

failed_l1b The actual ℓ1 norm values that caused errors.

gapplot.l1b A ggplot object showing the gap statistics plotted against ℓ1 norm constraint values.

gapplot.nnz A ggplot object showing the gap statistics plotted against the number of nonzero
weights.

Index

dist.array, 2

fredist, 3

mfkml, 4

SFclust, 6
SFclust.permute, 7

9

	dist.array
	fredist
	mfkml
	SFclust
	SFclust.permute
	Index

