Type: | Package |
Title: | Bayesian Methods for State Space Models |
Version: | 0.7.0 |
Description: | Implements methods for Bayesian analysis of State Space Models. Includes implementations of the Particle Marginal Metropolis-Hastings algorithm described in Andrieu et al. (2010) <doi:10.1111/j.1467-9868.2009.00736.x> and automatic tuning inspired by Pitt et al. (2012) <doi:10.1016/j.jeconom.2012.06.004> and J. Dahlin and T. B. Schön (2019) <doi:10.18637/jss.v088.c02>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | MASS, stats, dplyr, future, future.apply, Rcpp, checkmate |
LinkingTo: | Rcpp |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0), ggplot2, tidyr, extraDistr, rlang, expm |
Config/testthat/edition: | 3 |
URL: | https://github.com/BjarkeHautop/bayesSSM, https://bjarkehautop.github.io/bayesSSM/ |
BugReports: | https://github.com/BjarkeHautop/bayesSSM/issues |
VignetteBuilder: | knitr |
Config/Needs/website: | rmarkdown |
NeedsCompilation: | yes |
Packaged: | 2025-08-26 10:41:22 UTC; bjark |
Author: | Bjarke Hautop [aut, cre, cph] |
Maintainer: | Bjarke Hautop <bjarke.hautop@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-08-26 11:00:07 UTC |
bayesSSM: Bayesian Inference for State-Space Models
Description
The bayesSSM package provides implementations of particle filtering, Particle MCMC, and related methods for Bayesian inference in state-space models. It includes tools for simulation, posterior inference, and diagnostics.
Model Specification
Particle filter implementations in this package assume a discrete-time state-space model defined by:
A sequence of latent states
x_0, x_1, \ldots, x_T
evolving according to a Markov process.Observations
y_1, \ldots, y_T
that are conditionally independent given the corresponding latent states.
The model is specified as:
x_0 \sim \mu_\theta
x_t \sim f_\theta(x_t \mid x_{t-1}), \quad t = 1, \ldots, T
y_t \sim g_\theta(y_t \mid x_t), \quad t = 1, \ldots, T
where \theta
denotes model parameters passed via ...
.
The user provides the following functions:
-
init_fn
: draws from the initial distribution\mu_\theta
. -
transition_fn
: generates or evaluates the transition densityf_\theta
. -
weight_fn
: evaluates the observation likelihoodg_\theta
.
Author(s)
Maintainer: Bjarke Hautop bjarke.hautop@gmail.com [copyright holder]
See Also
Useful links:
Report bugs at https://github.com/BjarkeHautop/bayesSSM/issues
Internal function to back-transform parameters
Description
Internal function to back-transform parameters
Usage
.back_transform_params(theta_trans, transform)
Arguments
theta_trans |
transformed parameter vector |
transform |
transformation type for each parameter |
Value
original parameter vector
Helper function to validate input of user-defined functions and priors
Description
Helper function to validate input of user-defined functions and priors
Usage
.check_params_match(
init_fn,
transition_fn,
log_likelihood_fn,
pilot_init_params,
log_priors
)
Arguments
init_fn |
A function to initialize the state-space model. |
transition_fn |
A function that defines the state transition of the state-space model. |
log_likelihood_fn |
A function that calculates the log-likelihood for the state-space model given latent states. |
pilot_init_params |
A vector of initial parameter values. |
log_priors |
A list of functions for computing the log-prior of each parameter. |
Internal function to compute the Jacobian of the transformation
Description
Internal function to compute the Jacobian of the transformation
Usage
.compute_log_jacobian(theta, transform)
Arguments
theta |
parameter vector (on original scale) |
transform |
transformation type for each parameter |
Value
log-Jacobian of the transformation
Ensure that a function has a '...' argument
Description
Ensure that a function has a '...' argument
Usage
.ensure_dots(fun)
Arguments
fun |
A function to modify |
Value
The modified function with '...' added to its formals if it was not already present.
Core Particle Filter Function
Description
This function implements the underlying logic used for particle filters in a state space model using sequential Monte Carlo methods.
Usage
.particle_filter_core(
y,
num_particles,
init_fn,
transition_fn,
weight_fn,
aux_weight_fn = NULL,
move_fn = NULL,
obs_times = NULL,
algorithm = c("BPF", "APF", "RMPF"),
resample_algorithm = c("SIS", "SISR", "SISAR"),
resample_fn = c("stratified", "systematic", "multinomial"),
threshold = NULL,
return_particles = TRUE,
...
)
Arguments
y |
A numeric vector or matrix of observations. Each row represents an
observation at a time step. If observations are not equally spaced, use the
|
num_particles |
A positive integer specifying the number of particles. |
init_fn |
A function to initialize the particles. Should take
'num_particles' and return a matrix or vector of initial states. Additional
model parameters can be passed via |
transition_fn |
A function for propagating particles. Should take
'particles' and optionally 't'. Additional model parameters via |
weight_fn |
A function that computes the log weights for the particles given the observations and the current particles. It should take 'y', 'particles', and 't' as arguments. The function can include any model-specific parameters as named arguments. |
obs_times |
A numeric vector specifying observation time points. Must
match the number of rows in |
resample_algorithm |
A character string specifying the filtering
resample algorithm:
|
resample_fn |
A string indicating the resampling method:
|
threshold |
A numeric value specifying the ESS threshold for
|
return_particles |
Logical; if |
... |
Additional arguments passed to |
Value
A list with components:
- state_est
Estimated states over time (weighted mean of particles).
- ess
Effective sample size at each time step.
- loglike
Total log-likelihood.
- loglike_history
Log-likelihood at each time step.
- algorithm
The filtering algorithm used.
- particles_history
Matrix of particle states over time (if
return_particles = TRUE
).- weights_history
Matrix of particle weights over time (if
return_particles = TRUE
).
Model Specification
Particle filter implementations in this package assume a discrete-time state-space model defined by:
A sequence of latent states
x_0, x_1, \ldots, x_T
evolving according to a Markov process.Observations
y_1, \ldots, y_T
that are conditionally independent given the corresponding latent states.
The model is specified as:
x_0 \sim \mu_\theta
x_t \sim f_\theta(x_t \mid x_{t-1}), \quad t = 1, \ldots, T
y_t \sim g_\theta(y_t \mid x_t), \quad t = 1, \ldots, T
where \theta
denotes model parameters passed via ...
.
The user provides the following functions:
-
init_fn
: draws from the initial distribution\mu_\theta
. -
transition_fn
: generates or evaluates the transition densityf_\theta
. -
weight_fn
: evaluates the observation likelihoodg_\theta
.
Pilot Run for Particle Filter Tuning
Description
This internal function repeatedly evaluates the particle filter in order to estimate the variance of the log-likelihoods and to compute a recommended target number of particles for the Particle Marginal Metropolis Hastings (PMMH) algorithm.
Usage
.pilot_run(
pf_wrapper,
y,
pilot_n,
pilot_reps,
init_fn,
transition_fn,
log_likelihood_fn,
obs_times = NULL,
resample_fn = NULL,
...
)
Arguments
pilot_n |
An integer specifying the initial number of particles to use. |
pilot_reps |
An integer specifying the number of repetitions for the pilot run. |
Details
The function performs pilot_reps
evaluations of the particle
filter using the provided parameter vector theta
. It then estimates
the variance of the log-likelihoods and scales the initial particle number
by this variance. The final number of particles is taken as the ceiling of
the scaled value with a minimum of 50 and a maximum of 1000.
Value
A list containing:
- variance_estimate
The estimated variance of the log-likelihoods from the pilot run.
- target_N
The number of particles used in PMMH algorithm.
- pilot_loglikes
A numeric vector of log-likelihood values computed during the run.
Run Pilot Chain for Posterior Estimation
Description
Run Pilot Chain for Posterior Estimation
Usage
.run_pilot_chain(
pf_wrapper,
y,
pilot_m,
pilot_n,
pilot_reps,
init_fn,
transition_fn,
log_likelihood_fn,
log_priors,
proposal_sd,
obs_times = NULL,
param_transform = NULL,
pilot_init_params = NULL,
verbose = FALSE,
...
)
Arguments
pilot_m |
An integer specifying the number of iterations for the pilot chain. |
pilot_n |
An integer specifying the number of particles for the particle filter. |
pilot_reps |
An integer specifying the number of repetitions for the pilot run. |
log_priors |
A list of functions representing the log-priors for each model parameter. |
proposal_sd |
A numeric vector specifying the standard deviations for the random walk proposal distribution for each parameter. |
param_transform |
A character vector specifying the parameter transformations when proposing parameters using a random walk. Currently only supports "log" for log-transformation, "logit" for logit transformation, and "identity" for no transformation. Default is 'NULL', which correspond to no transformation ("identity). |
pilot_init_params |
A numeric vector of initial parameter values. If 'NULL', it will default to a vector of ones. Default is 'NULL'. |
... |
Additional arguments passed to the particle filter function. |
Details
This function runs a pilot chain to estimate the posterior mean and covariance of the model parameters using a particle filter. The chain is run for 'pilot_m' iterations, with each iteration proposing new parameters and evaluating their likelihood and prior. The chain is then used to estimate the posterior mean and covariance, which are used to tune the number of particles for the Particle Marginal Metropolis Hastings (PMMH) algorithm.
Value
A list containing:
pilot_theta_mean |
A numeric vector of the posterior mean of the parameters. |
pilot_theta_cov |
A matrix of the posterior covariance (or variance if only one parameter). |
target_N |
The estimated target number of particles for the PMMH algorithm. |
pilot_theta_chain |
A matrix containing the chain of parameter values throughout the pilot run. |
pilot_loglike_chain |
A vector containing the log-likelihood values associated with each iteration of the pilot chain. |
Internal function to transform parameters
Description
Internal function to transform parameters
Usage
.transform_params(theta, transform)
Arguments
theta |
parameter vector |
transform |
transformation type for each parameter |
Value
transformed parameter vector
Auxiliary Particle Filter (APF)
Description
The Auxiliary Particle Filter differs from the bootstrap filter by incorporating a look-ahead step: particles are reweighted using an approximation of the likelihood of the next observation prior to resampling. This adjustment can help reduce particle degeneracy and, improve filtering efficiency compared to the bootstrap approach.
Usage
auxiliary_filter(
y,
num_particles,
init_fn,
transition_fn,
log_likelihood_fn,
aux_log_likelihood_fn,
obs_times = NULL,
resample_algorithm = c("SISAR", "SISR", "SIS"),
resample_fn = c("stratified", "systematic", "multinomial"),
threshold = NULL,
return_particles = TRUE,
...
)
Arguments
y |
A numeric vector or matrix of observations. Each row represents an
observation at a time step. If observations are not equally spaced, use the
|
num_particles |
A positive integer specifying the number of particles. |
init_fn |
A function to initialize the particles. Should take
'num_particles' and return a matrix or vector of initial states. Additional
model parameters can be passed via |
transition_fn |
A function for propagating particles. Should take
'particles' and optionally 't'. Additional model parameters via |
log_likelihood_fn |
A function that returns the log-likelihood for each
particle given the current observation, particles, and optionally 't'.
Additional parameters via |
aux_log_likelihood_fn |
A function that computes the log-likelihood of
the next observation given the current particles. It should accept
arguments 'y', 'particles', optionally 't', and any additional model-specific
parameters via |
obs_times |
A numeric vector specifying observation time points. Must
match the number of rows in |
resample_algorithm |
A character string specifying the filtering
resample algorithm:
|
resample_fn |
A string indicating the resampling method:
|
threshold |
A numeric value specifying the ESS threshold for
|
return_particles |
Logical; if |
... |
Additional arguments passed to |
Value
A list with components:
- state_est
Estimated states over time (weighted mean of particles).
- ess
Effective sample size at each time step.
- loglike
Total log-likelihood.
- loglike_history
Log-likelihood at each time step.
- algorithm
The filtering algorithm used.
- particles_history
Matrix of particle states over time (if
return_particles = TRUE
).- weights_history
Matrix of particle weights over time (if
return_particles = TRUE
).
The Auxiliary Particle Filter (APF)
The Auxiliary Particle Filter (APF) was introduced by Pitt and Shephard
(1999) to improve upon the standard bootstrap filter by incorporating a
look ahead step. Before resampling at time t
, particles are weighted by
an auxiliary weight proportional to an estimate of the likelihood of the next
observation, guiding resampling to favor particles likely to contribute to
future predictions.
Specifically, if w_{t-1}^i
are the normalized weights and
x_{t-1}^i
are the particles at time t-1
, then auxiliary weights
are computed as
\tilde{w}_t^i \propto w_{t-1}^i \, p(y_t | \mu_t^i),
where \mu_t^i
is a predictive summary (e.g., the expected next state)
of the particle x_{t-1}^i
. Resampling is performed using
\tilde{w}_t^i
instead of w_{t-1}^i
.
This can reduce the variance of the importance weights at time t
and
help mitigate particle degeneracy, especially if the auxiliary weights are
chosen well.
Default resampling method is stratified resampling, which has lower variance than multinomial resampling (Douc et al., 2005).
Model Specification
Particle filter implementations in this package assume a discrete-time state-space model defined by:
A sequence of latent states
x_0, x_1, \ldots, x_T
evolving according to a Markov process.Observations
y_1, \ldots, y_T
that are conditionally independent given the corresponding latent states.
The model is specified as:
x_0 \sim \mu_\theta
x_t \sim f_\theta(x_t \mid x_{t-1}), \quad t = 1, \ldots, T
y_t \sim g_\theta(y_t \mid x_t), \quad t = 1, \ldots, T
where \theta
denotes model parameters passed via ...
.
The user provides the following functions:
-
init_fn
: draws from the initial distribution\mu_\theta
. -
transition_fn
: generates or evaluates the transition densityf_\theta
. -
weight_fn
: evaluates the observation likelihoodg_\theta
.
References
Pitt, M. K., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599. doi:10.1080/01621459.1999.10474153
Douc, R., Cappé, O., & Moulines, E. (2005). Comparison of Resampling Schemes for Particle Filtering. Accessible at: https://arxiv.org/abs/cs/0507025
Examples
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles) particles + rnorm(length(particles))
log_likelihood_fn <- function(y, particles) {
dnorm(y, mean = particles, sd = 1, log = TRUE)
}
aux_log_likelihood_fn <- function(y, particles) {
# Predict next state (mean stays same) and compute log p(y | x)
mean_forecast <- particles # since E[x'] = x in this model
dnorm(y, mean = mean_forecast, sd = 1, log = TRUE)
}
y <- cumsum(rnorm(50)) # dummy data
num_particles <- 100
result <- auxiliary_filter(
y = y,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
aux_log_likelihood_fn = aux_log_likelihood_fn
)
plot(result$state_est,
type = "l", col = "blue", main = "APF: State Estimates",
ylim = range(c(result$state_est, y))
)
points(y, col = "red", pch = 20)
# ---- With parameters ----
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles, mu) {
particles + rnorm(length(particles), mean = mu)
}
log_likelihood_fn <- function(y, particles, sigma) {
dnorm(y, mean = particles, sd = sigma, log = TRUE)
}
aux_log_likelihood_fn <- function(y, particles, mu, sigma) {
# Forecast mean of x' given x, then evaluate p(y | forecast)
forecast <- particles + mu
dnorm(y, mean = forecast, sd = sigma, log = TRUE)
}
y <- cumsum(rnorm(50)) # dummy data
num_particles <- 100
result <- auxiliary_filter(
y = y,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
aux_log_likelihood_fn = aux_log_likelihood_fn,
mu = 1,
sigma = 1
)
plot(result$state_est,
type = "l", col = "blue", main = "APF with Parameters",
ylim = range(c(result$state_est, y))
)
points(y, col = "red", pch = 20)
# ---- With observation gaps ----
simulate_ssm <- function(num_steps, mu, sigma) {
x <- numeric(num_steps)
y <- numeric(num_steps)
x[1] <- rnorm(1, mean = 0, sd = sigma)
y[1] <- rnorm(1, mean = x[1], sd = sigma)
for (t in 2:num_steps) {
x[t] <- mu * x[t - 1] + sin(x[t - 1]) + rnorm(1, mean = 0, sd = sigma)
y[t] <- x[t] + rnorm(1, mean = 0, sd = sigma)
}
y
}
data <- simulate_ssm(10, mu = 1, sigma = 1)
obs_times <- c(1, 2, 3, 5, 6, 7, 8, 9, 10) # Missing at t = 4
data_obs <- data[obs_times]
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles, mu) {
particles + rnorm(length(particles), mean = mu)
}
log_likelihood_fn <- function(y, particles, sigma) {
dnorm(y, mean = particles, sd = sigma, log = TRUE)
}
aux_log_likelihood_fn <- function(y, particles, mu, sigma) {
forecast <- particles + mu
dnorm(y, mean = forecast, sd = sigma, log = TRUE)
}
num_particles <- 100
result <- auxiliary_filter(
y = data_obs,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
aux_log_likelihood_fn = aux_log_likelihood_fn,
obs_times = obs_times,
mu = 1,
sigma = 1
)
plot(result$state_est,
type = "l", col = "blue", main = "APF with Observation Gaps",
ylim = range(c(result$state_est, data))
)
points(data_obs, col = "red", pch = 20)
Bootstrap Particle Filter (BPF)
Description
Implements a bootstrap particle filter for sequential Bayesian inference in state space models using sequential Monte Carlo methods.
Usage
bootstrap_filter(
y,
num_particles,
init_fn,
transition_fn,
log_likelihood_fn,
obs_times = NULL,
resample_algorithm = c("SISAR", "SISR", "SIS"),
resample_fn = c("stratified", "systematic", "multinomial"),
threshold = NULL,
return_particles = TRUE,
...
)
Arguments
y |
A numeric vector or matrix of observations. Each row represents an
observation at a time step. If observations are not equally spaced, use the
|
num_particles |
A positive integer specifying the number of particles. |
init_fn |
A function to initialize the particles. Should take
'num_particles' and return a matrix or vector of initial states. Additional
model parameters can be passed via |
transition_fn |
A function for propagating particles. Should take
'particles' and optionally 't'. Additional model parameters via |
log_likelihood_fn |
A function that returns the log-likelihood for each
particle given the current observation, particles, and optionally 't'.
Additional parameters via |
obs_times |
A numeric vector specifying observation time points. Must
match the number of rows in |
resample_algorithm |
A character string specifying the filtering
resample algorithm:
|
resample_fn |
A string indicating the resampling method:
|
threshold |
A numeric value specifying the ESS threshold for
|
return_particles |
Logical; if |
... |
Additional arguments passed to |
Value
A list with components:
- state_est
Estimated states over time (weighted mean of particles).
- ess
Effective sample size at each time step.
- loglike
Total log-likelihood.
- loglike_history
Log-likelihood at each time step.
- algorithm
The filtering algorithm used.
- particles_history
Matrix of particle states over time (if
return_particles = TRUE
).- weights_history
Matrix of particle weights over time (if
return_particles = TRUE
).
The Effective Sample Size (ESS) is defined as
ESS = \left(\sum_{i=1}^{n} w_i^2\right)^{-1},
where w_i
are the normalized weights of the particles.
Default resampling method is stratified resampling, which has lower variance than multinomial resampling (Douc et al., 2005).
Model Specification
Particle filter implementations in this package assume a discrete-time state-space model defined by:
A sequence of latent states
x_0, x_1, \ldots, x_T
evolving according to a Markov process.Observations
y_1, \ldots, y_T
that are conditionally independent given the corresponding latent states.
The model is specified as:
x_0 \sim \mu_\theta
x_t \sim f_\theta(x_t \mid x_{t-1}), \quad t = 1, \ldots, T
y_t \sim g_\theta(y_t \mid x_t), \quad t = 1, \ldots, T
where \theta
denotes model parameters passed via ...
.
The user provides the following functions:
-
init_fn
: draws from the initial distribution\mu_\theta
. -
transition_fn
: generates or evaluates the transition densityf_\theta
. -
weight_fn
: evaluates the observation likelihoodg_\theta
.
References
Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140(2), 107–113. doi:10.1049/ip-f-2.1993.0015
Douc, R., Cappé, O., & Moulines, E. (2005). Comparison of Resampling Schemes for Particle Filtering. Accessible at: https://arxiv.org/abs/cs/0507025
Examples
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles) particles + rnorm(length(particles))
log_likelihood_fn <- function(y, particles) {
dnorm(y, mean = particles, sd = 1, log = TRUE)
}
y <- cumsum(rnorm(50)) # dummy data
num_particles <- 100
# Run the particle filter using default settings.
result <- bootstrap_filter(
y = y,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn
)
plot(result$state_est,
type = "l", col = "blue", main = "State Estimates",
ylim = range(c(result$state_est, y))
)
points(y, col = "red", pch = 20)
# With parameters
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles, mu) {
particles + rnorm(length(particles), mean = mu)
}
log_likelihood_fn <- function(y, particles, sigma) {
dnorm(y, mean = particles, sd = sigma, log = TRUE)
}
y <- cumsum(rnorm(50)) # dummy data
num_particles <- 100
# Run the bootstrap particle filter using default settings.
result <- bootstrap_filter(
y = y,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
mu = 1,
sigma = 1
)
plot(result$state_est,
type = "l", col = "blue", main = "State Estimates",
ylim = range(c(result$state_est, y))
)
points(y, col = "red", pch = 20)
# With observations gaps
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles, mu) {
particles + rnorm(length(particles), mean = mu)
}
log_likelihood_fn <- function(y, particles, sigma) {
dnorm(y, mean = particles, sd = sigma, log = TRUE)
}
# Generate data using DGP
simulate_ssm <- function(num_steps, mu, sigma) {
x <- numeric(num_steps)
y <- numeric(num_steps)
x[1] <- rnorm(1, mean = 0, sd = sigma)
y[1] <- rnorm(1, mean = x[1], sd = sigma)
for (t in 2:num_steps) {
x[t] <- mu * x[t - 1] + sin(x[t - 1]) + rnorm(1, mean = 0, sd = sigma)
y[t] <- x[t] + rnorm(1, mean = 0, sd = sigma)
}
y
}
data <- simulate_ssm(10, mu = 1, sigma = 1)
# Suppose we have data for t=1,2,3,5,6,7,8,9,10 (i.e., missing at t=4)
obs_times <- c(1, 2, 3, 5, 6, 7, 8, 9, 10)
data_obs <- data[obs_times]
num_particles <- 100
# Specify observation times in the bootstrap particle filter using obs_times
result <- bootstrap_filter(
y = data_obs,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
obs_times = obs_times,
mu = 1,
sigma = 1,
)
plot(result$state_est,
type = "l", col = "blue", main = "State Estimates",
ylim = range(c(result$state_est, data))
)
points(data_obs, col = "red", pch = 20)
Create Tuning Control Parameters
Description
This function creates a list of tuning parameters used by the
pmmh
function. The tuning choices are inspired by Pitt et al.
[2012] and Dahlin and Schön [2019].
Usage
default_tune_control(
pilot_proposal_sd = 0.5,
pilot_n = 100,
pilot_m = 2000,
pilot_target_var = 1,
pilot_burn_in = 500,
pilot_reps = 100,
pilot_resample_algorithm = c("SISAR", "SISR", "SIS"),
pilot_resample_fn = c("stratified", "systematic", "multinomial")
)
Arguments
pilot_proposal_sd |
Standard deviation for pilot proposals. Default is 0.5. |
pilot_n |
Number of pilot particles for particle filter. Default is 100. |
pilot_m |
Number of iterations for MCMC. Default is 2000. |
pilot_target_var |
The target variance for the posterior log-likelihood evaluated at estimated posterior mean. Default is 1. |
pilot_burn_in |
Number of burn-in iterations for MCMC. Default is 500. |
pilot_reps |
Number of times a particle filter is run. Default is 100. |
pilot_resample_algorithm |
The resample_algorithm used for the pilot
particle filter. Default is |
pilot_resample_fn |
The resampling function used for the pilot particle
filter. Default is |
Value
A list of tuning control parameters.
References
M. K. Pitt, R. d. S. Silva, P. Giordani, and R. Kohn. On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics, 171(2):134–151, 2012. doi: https://doi.org/10.1016/j.jeconom.2012.06.004
J. Dahlin and T. B. Schön. Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models. Journal of Statistical Software, 88(2):1–41, 2019. doi: 10.18637/jss.v088.c02
Estimate effective sample size (ESS) of MCMC chains.
Description
Estimate effective sample size (ESS) of MCMC chains.
Usage
ess(chains)
Arguments
chains |
A matrix (iterations x chains) or a data.frame with a 'chain' column and parameter columns. |
Details
Uses the formula for ESS proposed by Vehtari et al. (2021).
Value
The estimated effective sample size (ess) if given a matrix, or a named vector of ESS values if given a data frame.
References
Vehtari et al. (2021). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. Available at: https://doi.org/10.1214/20-BA1221
Examples
# With a matrix:
chains <- matrix(rnorm(3000), nrow = 1000, ncol = 3)
ess(chains)
# With a data frame:
chains_df <- data.frame(
chain = rep(1:3, each = 1000),
param1 = rnorm(3000),
param2 = rnorm(3000)
)
ess(chains_df)
Particle filter functions
Description
The package provides several particle filter implementations for state-space
models for estimating the intractable marginal likelihood
p(y_{1:T}\mid \theta)
:
The simplest one is the bootstrap_filter
, and is thus
recommended as a starting point.
Common Parameters for Particle Filters
Description
These parameters are shared by particle filter implementations such as the bootstrap filter, auxiliary particle filter, and resample-move particle filter.
Arguments
y |
A numeric vector or matrix of observations. Each row represents an
observation at a time step. If observations are not equally spaced, use the
|
num_particles |
A positive integer specifying the number of particles. |
init_fn |
A function to initialize the particles. Should take
'num_particles' and return a matrix or vector of initial states. Additional
model parameters can be passed via |
transition_fn |
A function for propagating particles. Should take
'particles' and optionally 't'. Additional model parameters via |
log_likelihood_fn |
A function that returns the log-likelihood for each
particle given the current observation, particles, and optionally 't'.
Additional parameters via |
obs_times |
A numeric vector specifying observation time points. Must
match the number of rows in |
resample_algorithm |
A character string specifying the filtering
resample algorithm:
|
resample_fn |
A string indicating the resampling method:
|
threshold |
A numeric value specifying the ESS threshold for
|
return_particles |
Logical; if |
... |
Additional arguments passed to |
Model Specification for Particle Filters
Description
Model Specification for Particle Filters
Model Specification
Particle filter implementations in this package assume a discrete-time state-space model defined by:
A sequence of latent states
x_0, x_1, \ldots, x_T
evolving according to a Markov process.Observations
y_1, \ldots, y_T
that are conditionally independent given the corresponding latent states.
The model is specified as:
x_0 \sim \mu_\theta
x_t \sim f_\theta(x_t \mid x_{t-1}), \quad t = 1, \ldots, T
y_t \sim g_\theta(y_t \mid x_t), \quad t = 1, \ldots, T
where \theta
denotes model parameters passed via ...
.
The user provides the following functions:
-
init_fn
: draws from the initial distribution\mu_\theta
. -
transition_fn
: generates or evaluates the transition densityf_\theta
. -
weight_fn
: evaluates the observation likelihoodg_\theta
.
Shared Return Values for Particle Filters
Description
This block documents the common return value for particle filtering functions.
Value
A list with components:
- state_est
Estimated states over time (weighted mean of particles).
- ess
Effective sample size at each time step.
- loglike
Total log-likelihood.
- loglike_history
Log-likelihood at each time step.
- algorithm
The filtering algorithm used.
- particles_history
Matrix of particle states over time (if
return_particles = TRUE
).- weights_history
Matrix of particle weights over time (if
return_particles = TRUE
).
Particle Marginal Metropolis-Hastings (PMMH) for State-Space Models
Description
This function implements a Particle Marginal Metropolis-Hastings (PMMH) resample_algorithm to perform Bayesian inference in state-space models. It first runs a pilot chain to tune the proposal distribution and the number of particles for the particle filter, and then runs the main PMMH chain.
Usage
pmmh(
pf_wrapper,
y,
m,
init_fn,
transition_fn,
log_likelihood_fn,
log_priors,
pilot_init_params,
burn_in,
num_chains = 4,
obs_times = NULL,
resample_algorithm = c("SISAR", "SISR", "SIS"),
resample_fn = c("stratified", "systematic", "multinomial"),
param_transform = NULL,
tune_control = default_tune_control(),
verbose = FALSE,
return_latent_state_est = FALSE,
seed = NULL,
num_cores = 1,
...
)
Arguments
pf_wrapper |
A particle filter wrapper function. See
|
y |
A numeric vector or matrix of observations. Each row represents an
observation at a time step. If observations are not equally spaced, use the
|
m |
An integer specifying the number of MCMC iterations for each chain. |
init_fn |
A function to initialize the particles. Should take
'num_particles' and return a matrix or vector of initial states. Additional
model parameters can be passed via |
transition_fn |
A function for propagating particles. Should take
'particles' and optionally 't'. Additional model parameters via |
log_likelihood_fn |
A function that returns the log-likelihood for each
particle given the current observation, particles, and optionally 't'.
Additional parameters via |
log_priors |
A list of functions for computing the log-prior of each parameter. |
pilot_init_params |
A list of initial parameter values. Should be a list
of length |
burn_in |
An integer indicating the number of initial MCMC iterations to discard as burn-in. |
num_chains |
An integer specifying the number of PMMH chains to run. |
obs_times |
A numeric vector specifying observation time points. Must
match the number of rows in |
resample_algorithm |
A character string specifying the resampling algorithm to use in the particle filter. Options are: #'
|
resample_fn |
A string indicating the resampling method:
|
param_transform |
An optional character vector that specifies the
transformation applied to each parameter before proposing. The proposal is
made using a multivariate normal distribution on the transformed scale.
Parameters are then mapped back to their original scale before evaluation.
Currently supports |
tune_control |
A list of pilot tuning controls
(e.g., |
verbose |
A logical value indicating whether to print information about
pilot_run tuning. Defaults to |
return_latent_state_est |
A logical value indicating whether to return
the latent state estimates for each time step. Defaults to |
seed |
An optional integer to set the seed for reproducibility. |
num_cores |
An integer specifying the number of cores to use for
parallel processing. Defaults to 1. Each chain is assigned to its own core,
so the number of cores cannot exceed the number of chains
( |
... |
Additional arguments passed to |
Details
The PMMH resample_algorithm is essentially a Metropolis Hastings
algorithm, where instead of using the intractable marginal likelihood
p(y_{1:T}\mid \theta)
it instead uses the estimated likelihood using
a particle filter (see particle_filter
for available particle
filters). Values are
proposed using a multivariate normal distribution in the transformed space
(specified using 'param_transform').
The proposal covariance and the number of particles is chosen based on a
pilot run. The number of particles is chosen such that the variance of the
log-likelihood estimate at the estimated posterior mean is approximately 1
(with a minimum of 50 particles and a maximum of 1000).
Value
A list containing:
theta_chain
A dataframe of post burn-in parameter samples.
latent_state_chain
If
return_latent_state_est
isTRUE
, a list of matrices containing the latent state estimates for each time step.diagnostics
Diagnostics containing ESS and Rhat for each parameter (see
ess
andrhat
for documentation).
References
Andrieu et al. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342. doi: 10.1111/j.1467-9868.2009.00736.x
Examples
init_fn <- function(num_particles) {
rnorm(num_particles, mean = 0, sd = 1)
}
transition_fn <- function(particles, phi, sigma_x) {
phi * particles + sin(particles) +
rnorm(length(particles), mean = 0, sd = sigma_x)
}
log_likelihood_fn <- function(y, particles, sigma_y) {
dnorm(y, mean = cos(particles), sd = sigma_y, log = TRUE)
}
log_prior_phi <- function(phi) {
dnorm(phi, mean = 0, sd = 1, log = TRUE)
}
log_prior_sigma_x <- function(sigma) {
dexp(sigma, rate = 1, log = TRUE)
}
log_prior_sigma_y <- function(sigma) {
dexp(sigma, rate = 1, log = TRUE)
}
log_priors <- list(
phi = log_prior_phi,
sigma_x = log_prior_sigma_x,
sigma_y = log_prior_sigma_y
)
# Generate data
t_val <- 10
x <- numeric(t_val)
y <- numeric(t_val)
phi <- 0.8
sigma_x <- 1
sigma_y <- 0.5
init_state <- rnorm(1, mean = 0, sd = 1)
x[1] <- phi * init_state + sin(init_state) + rnorm(1, mean = 0, sd = sigma_x)
y[1] <- x[1] + rnorm(1, mean = 0, sd = sigma_y)
for (t in 2:t_val) {
x[t] <- phi * x[t - 1] + sin(x[t - 1]) + rnorm(1, mean = 0, sd = sigma_x)
y[t] <- cos(x[t]) + rnorm(1, mean = 0, sd = sigma_y)
}
x <- c(init_state, x)
# Should use higher MCMC iterations in practice (m)
pmmh_result <- pmmh(
pf_wrapper = bootstrap_filter,
y = y,
m = 1000,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
log_priors = log_priors,
pilot_init_params = list(
c(phi = 0.8, sigma_x = 1, sigma_y = 0.5),
c(phi = 1, sigma_x = 0.5, sigma_y = 1)
),
burn_in = 100,
num_chains = 2,
param_transform = list(
phi = "identity",
sigma_x = "log",
sigma_y = "log"
),
tune_control = default_tune_control(pilot_m = 500, pilot_burn_in = 100)
)
# Convergence warning is expected with such low MCMC iterations.
# Suppose we have data for t=1,2,3,5,6,7,8,9,10 (i.e., missing at t=4)
obs_times <- c(1, 2, 3, 5, 6, 7, 8, 9, 10)
y <- y[obs_times]
# Specify observation times in the pmmh using obs_times
pmmh_result <- pmmh(
pf_wrapper = bootstrap_filter,
y = y,
m = 1000,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
log_priors = log_priors,
pilot_init_params = list(
c(phi = 0.8, sigma_x = 1, sigma_y = 0.5),
c(phi = 1, sigma_x = 0.5, sigma_y = 1)
),
burn_in = 100,
num_chains = 2,
obs_times = obs_times,
param_transform = list(
phi = "identity",
sigma_x = "log",
sigma_y = "log"
),
tune_control = default_tune_control(pilot_m = 500, pilot_burn_in = 100)
)
Print method for PMMH output
Description
Displays a concise summary of parameter estimates from a PMMH output object, including means, standard deviations, medians, 95% credible intervals, effective sample sizes (ESS), and Rhat. This provides a quick overview of the posterior distribution and convergence diagnostics.
Usage
## S3 method for class 'pmmh_output'
print(x, ...)
Arguments
x |
An object of class 'pmmh_output'. |
... |
Additional arguments. |
Value
The object 'x' invisibly.
Examples
# Create dummy chains for two parameters across two chains
chain1 <- data.frame(param1 = rnorm(100), param2 = rnorm(100), chain = 1)
chain2 <- data.frame(param1 = rnorm(100), param2 = rnorm(100), chain = 2)
dummy_output <- list(
theta_chain = rbind(chain1, chain2),
diagnostics = list(
ess = c(param1 = 200, param2 = 190),
rhat = c(param1 = 1.01, param2 = 1.00)
)
)
class(dummy_output) <- "pmmh_output"
print(dummy_output)
Resample-Move Particle Filter (RMPF)
Description
The Resample-Move Particle Filter differs from standard resampling methods by including a Metropolis–Hastings move step after resampling. This additional step can increase particle diversity and, in some contexts, help mitigate sample impoverishment.
Usage
resample_move_filter(
y,
num_particles,
init_fn,
transition_fn,
log_likelihood_fn,
move_fn,
obs_times = NULL,
resample_fn = c("stratified", "systematic", "multinomial"),
return_particles = TRUE,
...
)
Arguments
y |
A numeric vector or matrix of observations. Each row represents an
observation at a time step. If observations are not equally spaced, use the
|
num_particles |
A positive integer specifying the number of particles. |
init_fn |
A function to initialize the particles. Should take
'num_particles' and return a matrix or vector of initial states. Additional
model parameters can be passed via |
transition_fn |
A function for propagating particles. Should take
'particles' and optionally 't'. Additional model parameters via |
log_likelihood_fn |
A function that returns the log-likelihood for each
particle given the current observation, particles, and optionally 't'.
Additional parameters via |
move_fn |
A function that moves the resampled particles.
Takes 'particles', optionally 't', and returns updated particles.
Can use |
obs_times |
A numeric vector specifying observation time points. Must
match the number of rows in |
resample_fn |
A string indicating the resampling method:
|
return_particles |
Logical; if |
... |
Additional arguments passed to |
Value
A list with components:
- state_est
Estimated states over time (weighted mean of particles).
- ess
Effective sample size at each time step.
- loglike
Total log-likelihood.
- loglike_history
Log-likelihood at each time step.
- algorithm
The filtering algorithm used.
- particles_history
Matrix of particle states over time (if
return_particles = TRUE
).- weights_history
Matrix of particle weights over time (if
return_particles = TRUE
).
The Resample-Move Particle Filter (RMPF)
The Resample-Move Particle Filter enhances the standard particle filtering
framework by introducing a move step after resampling. After resampling
at time t
, particles \{x_t^{(i)}\}_{i=1}^N
are propagated via
a Markov kernel K_t(x' \mid x)
that leaves the target posterior
p(x_t \mid y_{1:t})
invariant:
x_t^{(i)} \sim K_t(\cdot \mid x_t^{(i)}).
This move step often uses a Metropolis-Hastings update that preserves
the posterior distribution as the invariant distribution of K_t
.
The goal of the move step is to mitigate particle impoverishment — the collapse of diversity caused by resampling selecting only a few unique particles — by rejuvenating particles and exploring the state space more thoroughly. This leads to improved approximation of the filtering distribution and reduces Monte Carlo error.
The move_fn
argument represents this transition kernel and should
take the current particle set as input and return the updated particles.
Additional model-specific parameters may be passed via ...
.
Default resampling method is stratified resampling, which has lower variance than multinomial resampling (Douc et al., 2005).
In this implementation, resampling is performed at every time step using the specified method (default: stratified), followed immediately by the move step. This follows the standard Resample-Move framework as described by Gilks and Berzuini (2001). Unlike other particle filtering variants that may use an ESS threshold to decide whether to resample, RMPF requires resampling at every step to ensure the effectiveness of the subsequent rejuvenation step.
Model Specification
Particle filter implementations in this package assume a discrete-time state-space model defined by:
A sequence of latent states
x_0, x_1, \ldots, x_T
evolving according to a Markov process.Observations
y_1, \ldots, y_T
that are conditionally independent given the corresponding latent states.
The model is specified as:
x_0 \sim \mu_\theta
x_t \sim f_\theta(x_t \mid x_{t-1}), \quad t = 1, \ldots, T
y_t \sim g_\theta(y_t \mid x_t), \quad t = 1, \ldots, T
where \theta
denotes model parameters passed via ...
.
The user provides the following functions:
-
init_fn
: draws from the initial distribution\mu_\theta
. -
transition_fn
: generates or evaluates the transition densityf_\theta
. -
weight_fn
: evaluates the observation likelihoodg_\theta
.
References
Gilks, W. R., & Berzuini, C. (2001). Following a moving target—Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(1), 127–146. doi:10.2307/2670179
Douc, R., Cappé, O., & Moulines, E. (2005). Comparison of Resampling Schemes for Particle Filtering. Accessible at: https://arxiv.org/abs/cs/0507025
Examples
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles) particles + rnorm(length(particles))
log_likelihood_fn <- function(y, particles) {
dnorm(y, mean = particles, sd = 1, log = TRUE)
}
# Define a simple random-walk Metropolis move function
move_fn <- function(particle, y) {
proposal <- particle + rnorm(1, 0, 0.1)
log_p_current <- log_likelihood_fn(y = y, particles = particle)
log_p_proposal <- log_likelihood_fn(y = y, particles = proposal)
if (log(runif(1)) < (log_p_proposal - log_p_current)) {
return(proposal)
} else {
return(particle)
}
}
y <- cumsum(rnorm(50)) # Dummy data
num_particles <- 100
result <- resample_move_filter(
y = y,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
move_fn = move_fn
)
plot(result$state_est,
type = "l", col = "blue", main = "RMPF State Estimates",
ylim = range(c(result$state_est, y))
)
points(y, col = "red", pch = 20)
# With parameters
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles, mu) {
particles + rnorm(length(particles), mean = mu)
}
log_likelihood_fn <- function(y, particles, sigma) {
dnorm(y, mean = particles, sd = sigma, log = TRUE)
}
move_fn <- function(particle, y, sigma) {
proposal <- particle + rnorm(1, 0, 0.1)
log_p_curr <- log_likelihood_fn(y = y, particles = particle, sigma = sigma)
log_p_prop <- log_likelihood_fn(y = y, particles = proposal, sigma = sigma)
if (log(runif(1)) < (log_p_prop - log_p_curr)) {
return(proposal)
} else {
return(particle)
}
}
y <- cumsum(rnorm(50))
num_particles <- 100
result <- resample_move_filter(
y = y,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
move_fn = move_fn,
mu = 1,
sigma = 1
)
plot(result$state_est,
type = "l", col = "blue", main = "RMPF with Parameters",
ylim = range(c(result$state_est, y))
)
points(y, col = "red", pch = 20)
# With observation gaps
simulate_ssm <- function(num_steps, mu, sigma) {
x <- numeric(num_steps)
y <- numeric(num_steps)
x[1] <- rnorm(1, mean = 0, sd = sigma)
y[1] <- rnorm(1, mean = x[1], sd = sigma)
for (t in 2:num_steps) {
x[t] <- mu * x[t - 1] + sin(x[t - 1]) + rnorm(1, mean = 0, sd = sigma)
y[t] <- x[t] + rnorm(1, mean = 0, sd = sigma)
}
y
}
data <- simulate_ssm(10, mu = 1, sigma = 1)
obs_times <- c(1, 2, 3, 5, 6, 7, 8, 9, 10) # skip t=4
data_obs <- data[obs_times]
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles, mu) {
particles + rnorm(length(particles), mean = mu)
}
log_likelihood_fn <- function(y, particles, sigma) {
dnorm(y, mean = particles, sd = sigma, log = TRUE)
}
move_fn <- function(particle, y, sigma) {
proposal <- particle + rnorm(1, 0, 0.1)
log_p_cur <- log_likelihood_fn(y = y, particles = particle, sigma = sigma)
log_p_prop <- log_likelihood_fn(y = y, particles = proposal, sigma = sigma)
if (log(runif(1)) < (log_p_prop - log_p_cur)) {
return(proposal)
} else {
return(particle)
}
}
result <- resample_move_filter(
y = data_obs,
num_particles = 100,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
move_fn = move_fn,
obs_times = obs_times,
mu = 1,
sigma = 1
)
plot(result$state_est,
type = "l", col = "blue", main = "RMPF with Observation Gaps",
ylim = range(c(result$state_est, data))
)
points(data_obs, col = "red", pch = 20)
Compute split Rhat statistic
Description
Compute split Rhat statistic
Usage
rhat(chains)
Arguments
chains |
A matrix (iterations x chains) or a data.frame with a 'chain' column and parameter columns. |
Details
Uses the formula for split-Rhat proposed by Gelman et al. (2013).
Value
Rhat value (matrix input) or named vector of Rhat values.
References
Gelman et al. (2013). Bayesian Data Analysis, 3rd Edition.
Examples
# Example with matrix
chains <- matrix(rnorm(3000), nrow = 1000, ncol = 3)
rhat(chains)
#' # Example with data frame
chains_df <- data.frame(
chain = rep(1:3, each = 1000),
param1 = rnorm(3000),
param2 = rnorm(3000)
)
rhat(chains_df)
Summary method for PMMH output
Description
This function returns summary statistics for PMMH output objects, including means, standard deviations, medians, credible intervals, and diagnostics.
Usage
## S3 method for class 'pmmh_output'
summary(object, ...)
Arguments
object |
An object of class 'pmmh_output'. |
... |
Additional arguments. |
Value
A data frame containing summary statistics for each parameter.
Examples
# Create dummy chains for two parameters across two chains
chain1 <- data.frame(param1 = rnorm(100), param2 = rnorm(100), chain = 1)
chain2 <- data.frame(param1 = rnorm(100), param2 = rnorm(100), chain = 2)
dummy_output <- list(
theta_chain = rbind(chain1, chain2),
diagnostics = list(
ess = c(param1 = 200, param2 = 190),
rhat = c(param1 = 1.01, param2 = 1.00)
)
)
class(dummy_output) <- "pmmh_output"
summary(dummy_output)