Package ‘flowcluster’

August 21, 2025

Title Cluster Origin-Destination Flow Data
Version 0.2.1

Description Provides functionality for clustering
origin-destination (OD) pairs, representing desire lines (or flows).
This includes creating distance matrices between OD pairs and passing
distance matrices to a clustering algorithm. See the academic paper
Tao and Thill (2016) <doi:10.1111/gean.12100>
for more details on spatial clustering of flows.
See the paper on delineating demand-responsive operating areas
by Mahfouz et al. (2025) <doi:10.1016/j.urbmob.2025.100135>
for an example of how this package can be used to cluster flows for
applied transportation research.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

URL https://hussein-mahfouz.github.io/flowcluster/,
https://github.com/hussein-mahfouz/flowcluster
Depends R (>=4.1.0)

Imports sf, dbscan, dplyr, glue, Iwgeom, purrr, rlang, tibble, units,
tidyr, tidyselect

LazyData true

Suggests testthat (>= 3.0.0), tmap
Config/testthat/edition 3
NeedsCompilation no

Author Hussein Mahfouz [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1706-7802>),
Robin Lovelace [aut] (ORCID: <https://orcid.org/0000-0001-5679-6536>)

Maintainer Hussein Mahfouz <husseinmahfouz93@gmail.com>
Repository CRAN
Date/Publication 2025-08-21 09:40:11 UTC

https://doi.org/10.1111/gean.12100
https://doi.org/10.1016/j.urbmob.2025.100135
https://hussein-mahfouz.github.io/flowcluster/
https://github.com/hussein-mahfouz/flowcluster
https://orcid.org/0000-0003-1706-7802
https://orcid.org/0000-0001-5679-6536

2

add_flow_length

Contents
add_flow_length. 2
add_Xyuv . . . e e e 3
aggregate_clustered_flows 3
cluster flows_dbscan 5
dbscan_sensitivity L. e e e e 6
distance matrixX e e e e e e e 7
filter_by_length 8
flows_leeds e 9
flow_distance e 9
WEIght_VeCtor e e 10

Index 12

add_flow_length Add Length Column to Flow Data
Description

Also checks that ’origin’ and ’destination’ columns are present.

Usage

add_flow_length(x)

Arguments

X

Value

sf object of flows (LINESTRING, projected CRS)

sf object with an additional length_m column (od length in meters)

Examples

flows <- sf::st_transform(flows_leeds, 3857)
flows <- add_flow_length(flows)

add_xyuv 3

add_xyuv Add Start/End Coordinates & Flow IDs

Description

Add Start/End Coordinates & Flow IDs

Usage
add_xyuv(x)

Arguments

X sf object of flows

Value

tibble with x, y, u, v, flow_ID columns

Examples

flows <- sf::st_transform(flows_leeds, 3857)
flows <- add_flow_length(flows)
flows <- add_xyuv(flows)

aggregate_clustered_flows
Aggregate clustered OD flows into representative lines

Description

This function aggregates flows within clusters and creates a single representative line for each clus-
ter. The start and end coordinates are computed as weighted averages (weighted by flow counts or
another variable), or simple means if no weights are provided. Each cluster is represented by one
LINESTRING.

Usage

aggregate_clustered_flows(flows, weight = NULL, crs = sf::st_crs(flows))

Arguments
flows An sf object containing OD flows with coordinates for origins (x, y) and des-
tinations (u, v), a cluster column, and optionally a count or other weighting
variable.
weight (optional) Name of a column in flows to use for weighting. If NULL (default),

unweighted means are used.

crs Coordinate reference system for the output (default: taken from flows).

4 aggregate_clustered_flows

Value
An sf object with one line per cluster, containing:

* count_total: total weight (if provided), otherwise number of flows
* size: the cluster size (from the input, not recomputed)
* geometry: a LINESTRING representing the aggregated OD flow

Examples

#o-—-—- 1. Basic Usage: A quick, runnable example ---
This demonstrates the function with minimal, fast data preparation.
flows <- flowcluster::flows_leeds

Create the required input columns in a single, fast pipeline
flows_clustered <- flows |>
add_xyuv() |>
Manually create 3 dummy clusters for demonstration
dplyr::mutate(cluster = sample(1:3, size = nrow(flows), replace = TRUE)) |>
The function requires a 'size' column, so we add it
dplyr::group_by(cluster) [>
dplyr::add_tally(name = "size") |>
dplyr: :ungroup()

Demonstrate the function
flows_agg_w <- aggregate_clustered_flows(flows_clustered, weight = "count”)
print(flows_agg_w)

#-—-—- 2. Detailed Workflow (not run by default) ---

Not run:
This example shows the ideal end-to-end workflow, from raw data
to clustering and finally aggregation. It is not run during checks
because the clustering steps are too slow.

a) Prepare the data by filtering and adding coordinates
flows_prep <- flowcluster::flows_leeds |>
sf::st_transform(3857) |>
add_flow_length() |>
filter_by_length(length_min = 5000, length_max = 12000) |>
add_xyuv ()

b) Calculate distances and cluster the flows

distances <- flow_distance(flows_prep, alpha = 1.5, beta = 0.5)

dmat <- distance_matrix(distances)

wvec <- weight_vector(dmat, flows_prep, weight_col = "count")

flows_clustered_real <- cluster_flows_dbscan(dmat, wvec, flows_prep, eps = 8, minPts = 70)

c) Filter clusters and add a 'size' column
flows_clustered_real <- flows_clustered_real |>
dplyr::filter(cluster != @) |> # Filter out noise points
dplyr::group_by(cluster) |>
dplyr::mutate(size = dplyr::n()) |>
dplyr: :ungroup()

cluster_flows_dbscan

d) Now, use the function on the clustered data
flows_agg_real <- aggregate_clustered_flows(flows_clustered_real, weight = "count”)
print(flows_agg_real)

e) Visualize the results
if (requireNamespace("tmap"”, quietly = TRUE)) {

library(tmap)
This plot uses modern tmap v4 syntax.
tm_shape(flows_clustered_real, facet = "cluster”) +

tm_lines(col = "grey50", alpha = 0.5) +
tm_shape(flows_agg_real) +
tm_lines(col = "red”, lwd = 2) +
tm_layout(title = "Original Flows (Grey) and Aggregated Flows (Red)")
}

End(Not run)

cluster_flows_dbscan Cluster Flows using DBSCAN

Description

See dbscan for details on the DBSCAN algorithm.

Usage

cluster_flows_dbscan(dist_mat, w_vec, x, eps, minPts)

Arguments
dist_mat distance matrix
w_vec weight vector
X flows tibble with flow_ID
eps DBSCAN epsilon parameter
minPts DBSCAN minPts parameter
Value

flows tibble with an additional cluster column

Examples

flows <- sf::st_transform(flows_leeds, 3857)
flows <- head(flows, 100) # for testing

Add flow lengths and coordinates

flows <- add_flow_length(flows)

filter by length

6 dbscan_sensitivity

flows <- filter_by_length(flows, length_min = 5000, length_max = 12000)
flows <- add_xyuv(flows)

Calculate distances

distances <- flow_distance(flows, alpha = 1.5, beta = 0.5)

dmat <- distance_matrix(distances)

wvec <- weight_vector(dmat, flows, weight_col = "count")

clustered <- cluster_flows_dbscan(dmat, wvec, flows, eps = 8, minPts = 70)

dbscan_sensitivity Sensitivity analysis of DBSCAN parameters for flow clustering.

Description

The function allows you to test different combinations of epsilon and minPts parameters for cluster-
ing flows using DBSCAN. It can be used to determine what parameter values make sense for your
data

Usage

dbscan_sensitivity(
dist_mat,
flows,
options_epsilon,
options_minpts,

w_vec = NULL
)
Arguments
dist_mat aprecalculated distance matrix between desire lines (output of distance_matrix())
flows the original flows tibble (must contain flow_ID and ’count’ column)

options_epsilon
a vector of options for the epsilon parameter

options_minpts a vector of options for the minPts parameter

w_vec Optional precomputed weight vector (otherwise computed internally from ’count’
column)

Value

a tibble with columns: id (to identify eps and minpts), cluster, size (number of desire lines in
cluster), count_sum (total count per cluster)

distance_matrix

Examples

flows <- sf::st_transform(flows_leeds, 3857)

flows <- head(flows, 1000) # for testing

Add flow lengths and coordinates

flows <- add_flow_length(flows)

filter by length

flows <- filter_by_length(flows, length_min = 5000, length_max = 12000)
Add x, y, u, v coordinates to flows

flows <- add_xyuv(flows)

Calculate distance matrix

distances <- flow_distance(flows, alpha = 1.5, beta = 0.5)
dmat <- distance_matrix(distances)

Generate weight vector

w_vec <- weight_vector(dmat, flows, weight_col = "count")

Define the parameters for sensitivity analysis
options_epsilon <- seq(1, 10, by = 2)
options_minpts <- seq(10, 100, by = 10)
Run the sensitivity analysis
results <- dbscan_sensitivity(
dist_mat = dmat,
flows = flows,
options_epsilon = options_epsilon,
options_minpts = options_minpts,
w_vec = w_vec

distance_matrix Convert Long-Format Distance Tibble to Matrix

Description

Convert Long-Format Distance Tibble to Matrix

Usage
distance_matrix(distances, distance_col = "fds")
Arguments
distances tibble with columns flow_ID_a, flow_ID_b, and distance

distance_col column name for distance (default "fds")

Value

distance matrix (tibble with rownames). The matrix has flow_ID_a as rownames and flow_ID_b as
column names. This function converts the output of flow_distance() into a format suitable for
the dbscan clustering algorithm.

Examples

flows <- sf::st_transform(flows_leeds, 3857)

flows <- head(flows, 100) # for testing

Add flow lengths and coordinates

flows <- add_flow_length(flows)

flows <- add_xyuv(flows)

Calculate distances

distances <- flow_distance(flows, alpha = 1.5, beta = 0.5)
dmat <- distance_matrix(distances)

filter_by_length

filter_by_length Filter Flows by Length

Description

Filter Flows by Length

Usage

filter_by_length(x, length_min = @, length_max = Inf)

Arguments
X sf object with length_m
length_min minimum length (default 0)

length_max maximum length (default Inf)

Value

filtered sf object. Flows with length_m outside the specified range are removed.

Examples

flows <- sf::st_transform(flows_leeds, 3857)
flows <- add_flow_length(flows)
flows <- filter_by_length(flows, length_min = 5000, length_max = 12000)

flows_leeds 9

flows_leeds Example flow data for Leeds. It is from the 2021 cen-
sus, and it contains all Origin - Destination flows at the
MSOA level. For more info on census flow data, see the

Rhrefhttps://www.ons.gov.uk/census/aboutcensus/censusproducts/origindestinationflowdataONS

documentation See data-raw/flows_leeds.R for how this data was
created.

Description

Example flow data for Leeds. It is from the 2021 census, and it contains all Origin - Destination
flows at the MSOA level. For more info on census flow data, see the ONS documentation See
data-raw/flows_leeds.R for how this data was created.

Usage

flows_leeds

Format
An object of class sf with LINESTRING geometry. It has the following columns:
origin MSOA code of origin zone
destination MSOA code of destination zone

count number of people moving from origin to destination

geometry desire line between origin and destination

Source

https://www.nomisweb.co.uk/sources/census_2021_od

flow_distance Calculate Flow Distance and Dissimilarity

Description
This function calculates flow distance and dissimilarity measures between all pairs of flows based
on the method described in @tao02016spatial.

Usage

flow_distance(x, alpha = 1, beta = 1)

https://www.ons.gov.uk/census/aboutcensus/censusproducts/origindestinationflowdata
https://www.nomisweb.co.uk/sources/census_2021_od

10 weight_vector

Arguments
X tibble with flow_ID, X, y, u, v, length_m
alpha numeric, origin weight
beta numeric, destination weight

Value

tibble of all OD pairs with fd, fds columns

References

Tao, R., Thill, J.-C., 2016. Spatial cluster detection in spatial flow data. Geographical Analysis 48,
355-372. https://doi.org/10.1111/gean.12100

Examples

flows <- sf::st_transform(flows_leeds, 3857)

flows <- head(flows, 100) # for testing

Add flow lengths and coordinates

flows <- add_flow_length(flows)

flows <- add_xyuv(flows)

Calculate distances

distances <- flow_distance(flows, alpha = 1.5, beta = 0.5)

weight_vector Generate Weight Vector from Flows

Description

Generate Weight Vector from Flows

Usage

weight_vector(dist_mat, x, weight_col = "count")
Arguments

dist_mat distance matrix

X flows tibble with flow_ID and weight_col

weight_col column to use as weights (default = "count")
Value

numeric weight vector. Each element corresponds to a flow in the distance matrix, and is used as a
weight in the DBSCAN clustering algorithm.

weight_vector

Examples

flows <- sf::st_transform(flows_leeds, 3857)

flows <- head(flows, 100) # for testing

Add flow lengths and coordinates

flows <- add_flow_length(flows)

flows <- add_xyuv(flows)

Calculate distances

distances <- flow_distance(flows, alpha = 1.5, beta = 0.5)
dmat <- distance_matrix(distances)

wvec <- weight_vector(dmat, flows, weight_col = "count")

11

Index

x datasets
flows_leeds, 9

add_flow_length, 2
add_xyuv, 3
aggregate_clustered_flows, 3

cluster_flows_dbscan, 5

dbscan, 5, 7
dbscan_sensitivity, 6
distance_matrix, 7

filter_by_length, 8
flow_distance, 9
flows_leeds, 9

sf, 9

weight_vector, 10

12

	add_flow_length
	add_xyuv
	aggregate_clustered_flows
	cluster_flows_dbscan
	dbscan_sensitivity
	distance_matrix
	filter_by_length
	flows_leeds
	flow_distance
	weight_vector
	Index

