Error estimation

2025-08-26

For the most part, this document will present the functionalities of the function surveysd::calc.stError() which generates point estimates and standard errors for user-supplied estimation functions.

Prerequisites

In order to use a dataset with calc.stError(), several weight columns have to be present. Each weight column corresponds to a bootstrap sample. In the following examples, we will use the data from demo.eusilc() and attach the bootstrap weights using draw.bootstrap() and recalib(). Please refer to the documentation of those functions for more detail.

library(surveysd)

set.seed(1234)
eusilc <- demo.eusilc(prettyNames = TRUE)
dat_boot <- draw.bootstrap(eusilc, REP = 10, hid = "hid", weights = "pWeight",
                           strata = "region", period = "year")
dat_boot_calib <- recalib(dat_boot, conP.var = "gender", conH.var = "region",
                          epsP = 1e-2, epsH = 2.5e-2, verbose = FALSE)
dat_boot_calib[, onePerson := nrow(.SD) == 1, by = .(year, hid)]

## print part of the dataset
dat_boot_calib[1:5, .(year, povertyRisk, eqIncome, onePerson, pWeight, w1, w2, w3, w4, w5)]
year povertyRisk eqIncome onePerson pWeight w1 w2 w3 w4 w5
2010 FALSE 16090.69 FALSE 504.5696 1013.1805463 0.4502254 1001.5595 1015.8425 0.4456781
2010 FALSE 16090.69 FALSE 504.5696 1013.1805463 0.4502254 1001.5595 1015.8425 0.4456781
2010 FALSE 16090.69 FALSE 504.5696 1013.1805463 0.4502254 1001.5595 1015.8425 0.4456781
2010 FALSE 27076.24 FALSE 493.3824 0.4413742 0.4409086 975.1408 994.4018 979.7081838
2010 FALSE 27076.24 FALSE 493.3824 0.4413742 0.4409086 975.1408 994.4018 979.7081838

Estimator functions

The parameters fun and var in calc.stError() define the estimator to be used in the error analysis. There are two built-in estimator functions weightedSum() and weightedRatio() which can be used as follows.

povertyRate <- calc.stError(dat_boot_calib, var = "povertyRisk", fun = weightedRatio)
totalIncome <- calc.stError(dat_boot_calib, var = "eqIncome", fun = weightedSum)

Those functions calculate the ratio of persons at risk of poverty (in percent) and the total income. By default, the results are calculated separately for each reference period.

povertyRate$Estimates
year n N estimate_type val_povertyRisk stE_povertyRisk
2010 14827 8182222 direct 14.44422 0.3755538
2011 14827 8182222 direct 14.77393 0.2298196
2012 14827 8182222 direct 15.04515 0.2056325
2013 14827 8182222 direct 14.89013 0.4515894
2014 14827 8182222 direct 15.14556 0.4954098
2015 14827 8182222 direct 15.53640 0.5456595
2016 14827 8182222 direct 15.08315 0.5211549
2017 14827 8182222 direct 15.42019 0.3757101
totalIncome$Estimates
year n N estimate_type val_eqIncome stE_eqIncome
2010 14827 8182222 direct 162750998071 904175758
2011 14827 8182222 direct 161926931417 1229058265
2012 14827 8182222 direct 162576509628 1903487229
2013 14827 8182222 direct 163199507862 1624805090
2014 14827 8182222 direct 163986275009 1464839665
2015 14827 8182222 direct 163416275447 1665569708
2016 14827 8182222 direct 162706205137 2073914048
2017 14827 8182222 direct 164314959107 2030896610

Columns that use the val_ prefix denote the point estimate belonging to the “main weight” of the dataset, which is pWeight in case of the dataset used here.

Columns with the stE_ prefix denote standard errors calculated with bootstrap replicates. The replicates result in using w1, w2, …, w10 instead of pWeight when applying the estimator.

n denotes the number of observations for the year and N denotes the total weight of those persons.

Custom estimators

In order to define a custom estimator function to be used in fun, the function needs to have at least two arguments like the example below.

## define custom estimator
myWeightedSum <- function(x, w) {
  sum(x*w)
}

## check if results are equal to the one using `surveysd::weightedSum()`
totalIncome2 <- calc.stError(dat_boot_calib, var = "eqIncome", fun = myWeightedSum)
all.equal(totalIncome$Estimates, totalIncome2$Estimates)
## [1] TRUE

The parameters x and w can be assumed to be vectors with equal length with w being numeric weight vector and x being the column defined in the var argument. It will be called once for each period (in this case year) and for each weight column (in this case pWeight, w1, w2, …, w10).

Custom estimators using additional parameters can also be supplied and parameter add.arg can be used to set the additional arguments for the custom estimator.

## use add.arg-argument
fun <- function(x, w, b) {
  sum(x*w*b)
}
add.arg = list(b="onePerson")

err.est <- calc.stError(dat_boot_calib, var = "povertyRisk", fun = fun,
                        period.mean = 0, add.arg=add.arg)
err.est$Estimates
year n N estimate_type val_povertyRisk stE_povertyRisk
2010 14827 8182222 direct 273683.9 14449.17
2011 14827 8182222 direct 261883.6 12029.86
2012 14827 8182222 direct 243083.9 13071.31
2013 14827 8182222 direct 238004.4 15764.40
2014 14827 8182222 direct 218572.1 16665.11
2015 14827 8182222 direct 219984.1 18322.78
2016 14827 8182222 direct 201753.9 14075.25
2017 14827 8182222 direct 196881.2 13604.54
# compare with direct computation
compare.value <- dat_boot_calib[,fun(povertyRisk,pWeight,b=onePerson),
                                 by=c("year")]
all((compare.value$V1-err.est$Estimates$val_povertyRisk)==0)
## [1] TRUE

The above chunk computes the weighted poverty ratio for single person households.

Adjust variable depending on bootstrap weights

In our example the variable povertyRisk is a boolean and is TRUE if the income is less than 60% of the weighted median income. Thus it directly depends on the original weight vector pWeight. To further reduce the estimated error one should calculate for each bootstrap replicate weight \(w\) the weighted median income \(medIncome_{w}\) and then define \(povertyRisk_w\) as

\[ povertyRisk_w = \cases{1 \quad\text{if Income}<0.6\cdot medIncome_{w}\\ 0 \quad\text{else}} \]

The estimator can then be applied to the new variable \(povertyRisk_w\). This can be realized using a custom estimator function.

# custom estimator to first derive poverty threshold 
# and then estimate a weighted ratio
povmd <- function(x, w) {
 md <- laeken::weightedMedian(x, w)*0.6
 pmd60 <- x < md
 # weighted ratio is directly estimated inside the function
 return(sum(w[pmd60])/sum(w)*100)
}

err.est <- calc.stError(
  dat_boot_calib, var = "povertyRisk", fun = weightedRatio,
  fun.adjust.var = povmd, adjust.var = "eqIncome")
err.est$Estimates
year n N estimate_type val_povertyRisk stE_povertyRisk
2010 14827 8182222 direct 14.44422 0
2011 14827 8182222 direct 14.77393 0
2012 14827 8182222 direct 15.04515 0
2013 14827 8182222 direct 14.89013 0
2014 14827 8182222 direct 15.14556 0
2015 14827 8182222 direct 15.53640 0
2016 14827 8182222 direct 15.08315 0
2017 14827 8182222 direct 15.42019 0

The approach shown above is only valid if no grouping variables are supplied (parameter group = NULL). If grouping variables are supplied one should use parameters fun.adjust.var and adjust.var such that the \(povertyRisk_w\) is first calculated for each period and then used for each grouping in group.

# using fun.adjust.var and adjust.var to estimate povmd60 indicator
# for each period and bootstrap weight before applying the weightedRatio
povmd2 <- function(x, w) {
 md <- laeken::weightedMedian(x, w)*0.6
 pmd60 <- x < md
 return(as.integer(pmd60))
}

# set adjust.var="eqIncome" so the income vector is used to estimate
# the povmd60 indicator for each bootstrap weight
# and the resulting indicators are passed to function weightedRatio
group <- "gender"
err.est <- calc.stError(
  dat_boot_calib, var = "povertyRisk", fun = weightedRatio, group = "gender",
  fun.adjust.var = povmd2, adjust.var = "eqIncome")
err.est$Estimates
year n N gender estimate_type val_povertyRisk stE_povertyRisk
2010 7267 3979572 male direct 12.02660 0.4858507
2010 7560 4202650 female direct 16.73351 0.6959347
2010 14827 8182222 NA direct 14.44422 0.5756880
2011 7267 3979572 male direct 12.81921 0.2873416
2011 7560 4202650 female direct 16.62488 0.3743578
2011 14827 8182222 NA direct 14.77393 0.2694827
2012 7267 3979572 male direct 13.76065 0.2865017
2012 7560 4202650 female direct 16.26147 0.2689458
2012 14827 8182222 NA direct 15.04515 0.1903772
2013 7267 3979572 male direct 13.88962 0.4730442
2013 7560 4202650 female direct 15.83754 0.1908739
2013 14827 8182222 NA direct 14.89013 0.3074631
2014 7267 3979572 male direct 14.50351 0.5042843
2014 7560 4202650 female direct 15.75353 0.3463626
2014 14827 8182222 NA direct 15.14556 0.3709321
2015 7267 3979572 male direct 15.12289 0.6285688
2015 7560 4202650 female direct 15.92796 0.4200607
2015 14827 8182222 NA direct 15.53640 0.4914012
2016 7267 3979572 male direct 14.57968 0.5546359
2016 7560 4202650 female direct 15.55989 0.3072535
2016 14827 8182222 NA direct 15.08315 0.4023717
2017 7267 3979572 male direct 14.94816 0.4973673
2017 7560 4202650 female direct 15.86717 0.6738396
2017 14827 8182222 NA direct 15.42019 0.5689435

Multiple estimators

In case an estimator should be applied to several columns of the dataset, var can be set to a vector containing all necessary columns.

multipleRates <- calc.stError(dat_boot_calib, var = c("povertyRisk", "onePerson"), fun = weightedRatio)
multipleRates$Estimates
year n N estimate_type val_povertyRisk stE_povertyRisk val_onePerson stE_onePerson
2010 14827 8182222 direct 14.44422 0.3942534 14.85737 0.3942534
2011 14827 8182222 direct 14.77393 0.3043969 14.85737 0.3043969
2012 14827 8182222 direct 15.04515 0.2895304 14.85737 0.2895304
2013 14827 8182222 direct 14.89013 0.3950952 14.85737 0.3950952
2014 14827 8182222 direct 15.14556 0.4561354 14.85737 0.4561354
2015 14827 8182222 direct 15.53640 0.6039997 14.85737 0.6039997
2016 14827 8182222 direct 15.08315 0.5295194 14.85737 0.5295194
2017 14827 8182222 direct 15.42019 0.6276176 14.85737 0.6276176

Here we see the relative number of persons at risk of poverty and the relative number of one-person households.

Grouping

The groups argument can be used to calculate estimators for different subsets of the data. This argument can take the grouping variable as a string that refers to a column name (usually a factor) in dat. If set, all estimators are not only split by the reference period but also by the grouping variable. For simplicity, only one reference period of the above data is used.

dat2 <- subset(dat_boot_calib, year == 2010)
for (att  in c("period", "weights", "b.rep"))
  attr(dat2, att) <- attr(dat_boot_calib, att)

To calculate the ratio of persons at risk of poverty for each federal state of Austria, group = "region" can be used.

povertyRates <- calc.stError(dat2, var = "povertyRisk", fun = weightedRatio, group = "region")
povertyRates$Estimates
year n N region estimate_type val_povertyRisk stE_povertyRisk
2010 549 260564 Burgenland direct 19.53984 3.8201446
2010 733 377355 Vorarlberg direct 16.53731 3.4361247
2010 924 535451 Salzburg direct 13.78734 1.8458914
2010 1078 563648 Carinthia direct 13.08627 2.0096038
2010 1317 701899 Tyrol direct 15.30819 1.8293976
2010 2295 1167045 Styria direct 14.37464 1.0559605
2010 2322 1598931 Vienna direct 17.23468 1.1871171
2010 2804 1555709 Lower Austria direct 13.84362 1.1256995
2010 2805 1421620 Upper Austria direct 10.88977 0.9377872
2010 14827 8182222 NA direct 14.44422 0.3755538

The last row with region = NA denotes the aggregate over all regions. Note that the columns N and n now show the weighted and unweighted number of persons in each region.

Several grouping variables

In case more than one grouping variable is used, there are several options of calling calc.stError() depending on whether combinations of grouping levels should be regarded or not. We will consider the variables gender and region as our grouping variables and show three options on how calc.stError() can be called.

Option 1: All regions and all genders

Calculate the point estimate and standard error for each region and each gender. The number of rows in the output is therefore

\[n_\text{periods}\cdot(n_\text{regions} + n_\text{genders} + 1) = 1\cdot(9 + 2 + 1) = 12.\]

The last row is again the estimate for the whole period.

povertyRates <- calc.stError(dat2, var = "povertyRisk", fun = weightedRatio, 
                             group = c("gender", "region"))
povertyRates$Estimates
year n N gender region estimate_type val_povertyRisk stE_povertyRisk
2010 549 260564 NA Burgenland direct 19.53984 3.8201446
2010 733 377355 NA Vorarlberg direct 16.53731 3.4361247
2010 924 535451 NA Salzburg direct 13.78734 1.8458914
2010 1078 563648 NA Carinthia direct 13.08627 2.0096038
2010 1317 701899 NA Tyrol direct 15.30819 1.8293976
2010 2295 1167045 NA Styria direct 14.37464 1.0559605
2010 2322 1598931 NA Vienna direct 17.23468 1.1871171
2010 2804 1555709 NA Lower Austria direct 13.84362 1.1256995
2010 2805 1421620 NA Upper Austria direct 10.88977 0.9377872
2010 7267 3979572 male NA direct 12.02660 0.3524528
2010 7560 4202650 female NA direct 16.73351 0.4706546
2010 14827 8182222 NA NA direct 14.44422 0.3755538

Option 2: All combinations of region and gender

Split the data by all combinations of the two grouping variables. This will result in a larger output-table of the size

\[n_\text{periods}\cdot(n_\text{regions} \cdot n_\text{genders} + 1) = 1\cdot(9\cdot2 + 1)= 19.\]

povertyRates <- calc.stError(dat2, var = "povertyRisk", fun = weightedRatio, 
                             group = list(c("gender", "region")))
povertyRates$Estimates
year n N gender region estimate_type val_povertyRisk stE_povertyRisk
2010 261 122741.8 male Burgenland direct 17.414524 3.7608324
2010 288 137822.2 female Burgenland direct 21.432598 4.1870089
2010 359 182732.9 male Vorarlberg direct 12.973259 3.7597884
2010 374 194622.1 female Vorarlberg direct 19.883637 3.8858420
2010 440 253143.7 male Salzburg direct 9.156964 1.9057526
2010 484 282307.3 female Salzburg direct 17.939382 2.1700685
2010 517 268581.4 male Carinthia direct 10.552148 1.6181769
2010 561 295066.6 female Carinthia direct 15.392924 2.6174006
2010 650 339566.5 male Tyrol direct 12.857542 2.2710099
2010 667 362332.5 female Tyrol direct 17.604861 1.6905978
2010 1128 571011.7 male Styria direct 11.671247 1.2206931
2010 1132 774405.4 male Vienna direct 15.590616 1.0566260
2010 1167 596033.3 female Styria direct 16.964539 1.2797304
2010 1190 824525.6 female Vienna direct 18.778813 1.4814944
2010 1363 684272.5 male Upper Austria direct 9.074690 0.9212612
2010 1387 772593.2 female Lower Austria direct 16.372949 1.2166483
2010 1417 783115.8 male Lower Austria direct 11.348283 1.1851814
2010 1442 737347.5 female Upper Austria direct 12.574205 1.1522839
2010 14827 8182222.0 NA NA direct 14.444218 0.3755538

Option 3: Cobination of Option 1 and Option 2

In this case, the estimates and standard errors are calculated for

  • every gender,
  • every region and
  • every combination of region and gender.

The number of rows in the output is therefore

\[n_\text{periods}\cdot(n_\text{regions} \cdot n_\text{genders} + n_\text{regions} + n_\text{genders} + 1) = 1\cdot(9\cdot2 + 9 + 2 + 1) = 30.\]

povertyRates <- calc.stError(dat2, var = "povertyRisk", fun = weightedRatio, 
                             group = list("gender", "region", c("gender", "region")))
povertyRates$Estimates
year n N gender region estimate_type val_povertyRisk stE_povertyRisk
2010 261 122741.8 male Burgenland direct 17.414524 3.7608324
2010 288 137822.2 female Burgenland direct 21.432598 4.1870089
2010 359 182732.9 male Vorarlberg direct 12.973259 3.7597884
2010 374 194622.1 female Vorarlberg direct 19.883637 3.8858420
2010 440 253143.7 male Salzburg direct 9.156964 1.9057526
2010 484 282307.3 female Salzburg direct 17.939382 2.1700685
2010 517 268581.4 male Carinthia direct 10.552148 1.6181769
2010 549 260564.0 NA Burgenland direct 19.539836 3.8201446
2010 561 295066.6 female Carinthia direct 15.392924 2.6174006
2010 650 339566.5 male Tyrol direct 12.857542 2.2710099
2010 667 362332.5 female Tyrol direct 17.604861 1.6905978
2010 733 377355.0 NA Vorarlberg direct 16.537310 3.4361247
2010 924 535451.0 NA Salzburg direct 13.787343 1.8458914
2010 1078 563648.0 NA Carinthia direct 13.086268 2.0096038
2010 1128 571011.7 male Styria direct 11.671247 1.2206931
2010 1132 774405.4 male Vienna direct 15.590616 1.0566260
2010 1167 596033.3 female Styria direct 16.964539 1.2797304
2010 1190 824525.6 female Vienna direct 18.778813 1.4814944
2010 1317 701899.0 NA Tyrol direct 15.308191 1.8293976
2010 1363 684272.5 male Upper Austria direct 9.074690 0.9212612
2010 1387 772593.2 female Lower Austria direct 16.372949 1.2166483
2010 1417 783115.8 male Lower Austria direct 11.348283 1.1851814
2010 1442 737347.5 female Upper Austria direct 12.574205 1.1522839
2010 2295 1167045.0 NA Styria direct 14.374637 1.0559605
2010 2322 1598931.0 NA Vienna direct 17.234683 1.1871171
2010 2804 1555709.0 NA Lower Austria direct 13.843623 1.1256995
2010 2805 1421620.0 NA Upper Austria direct 10.889773 0.9377872
2010 7267 3979571.7 male NA direct 12.026600 0.3524528
2010 7560 4202650.3 female NA direct 16.733508 0.4706546
2010 14827 8182222.0 NA NA direct 14.444218 0.3755538

Group differences

If differences between groups need to be calculated, e.g difference of poverty rates between gender = "male" and gender = "female", parameter group.diff can be utilised. Setting group.diff = TRUE the differences and the standard error of these differences for all variables defined in groups will be calculated.

povertyRates <- calc.stError(dat2, var = "povertyRisk", fun = weightedRatio, 
                             group = c("gender", "region"),
                             group.diff = TRUE)
povertyRates$Estimates
year n N gender region estimate_type val_povertyRisk stE_povertyRisk
2010 549.0 260564.0 NA Burgenland direct 19.5398365 3.8201446
2010 641.0 318959.5 NA Burgenland - Vorarlberg group difference 3.0025263 4.3512326
2010 733.0 377355.0 NA Vorarlberg direct 16.5373102 3.4361247
2010 736.5 398007.5 NA Burgenland - Salzburg group difference 5.7524933 4.0727197
2010 813.5 412106.0 NA Burgenland - Carinthia group difference 6.4535688 4.2042780
2010 828.5 456403.0 NA Salzburg - Vorarlberg group difference -2.7499670 3.5203199
2010 905.5 470501.5 NA Carinthia - Vorarlberg group difference -3.4510424 3.7663942
2010 924.0 535451.0 NA Salzburg direct 13.7873432 1.8458914
2010 933.0 481231.5 NA Burgenland - Tyrol group difference 4.2316460 4.2130768
2010 1001.0 549549.5 NA Carinthia - Salzburg group difference -0.7010755 2.6242885
2010 1025.0 539627.0 NA Tyrol - Vorarlberg group difference -1.2291197 4.6030925
2010 1078.0 563648.0 NA Carinthia direct 13.0862677 2.0096038
2010 1120.5 618675.0 NA Salzburg - Tyrol group difference -1.5208473 2.3646678
2010 1197.5 632773.5 NA Carinthia - Tyrol group difference -2.2219227 3.0161373
2010 1317.0 701899.0 NA Tyrol direct 15.3081905 1.8293976
2010 1422.0 713804.5 NA Burgenland - Styria group difference 5.1651992 4.6852127
2010 1435.5 929747.5 NA Burgenland - Vienna group difference 2.3051533 3.8296985
2010 1514.0 772200.0 NA Styria - Vorarlberg group difference -2.1626729 4.1234841
2010 1527.5 988143.0 NA Vienna - Vorarlberg group difference 0.6973730 3.8746662
2010 1609.5 851248.0 NA Salzburg - Styria group difference -0.5872941 2.1351288
2010 1623.0 1067191.0 NA Salzburg - Vienna group difference -3.4473400 1.9229290
2010 1676.5 908136.5 NA Burgenland - Lower Austria group difference 5.6962137 4.4195868
2010 1677.0 841092.0 NA Burgenland - Upper Austria group difference 8.6500631 3.8010158
2010 1686.5 865346.5 NA Carinthia - Styria group difference -1.2883695 2.2730489
2010 1700.0 1081289.5 NA Carinthia - Vienna group difference -4.1484155 2.5062449
2010 1768.5 966532.0 NA Lower Austria - Vorarlberg group difference -2.6936874 3.4123823
2010 1769.0 899487.5 NA Upper Austria - Vorarlberg group difference -5.6475368 3.5482126
2010 1806.0 934472.0 NA Styria - Tyrol group difference -0.9335532 1.8749174
2010 1819.5 1150415.0 NA Tyrol - Vienna group difference -1.9264927 1.7045409
2010 1864.0 1045580.0 NA Lower Austria - Salzburg group difference 0.0562796 1.8470515
2010 1864.5 978535.5 NA Salzburg - Upper Austria group difference 2.8975698 2.2161464
2010 1941.0 1059678.5 NA Carinthia - Lower Austria group difference -0.7573551 2.0484059
2010 1941.5 992634.0 NA Carinthia - Upper Austria group difference 2.1964944 2.4497219
2010 2060.5 1128804.0 NA Lower Austria - Tyrol group difference -1.4645677 2.5759089
2010 2061.0 1061759.5 NA Tyrol - Upper Austria group difference 4.4184171 1.6771042
2010 2295.0 1167045.0 NA Styria direct 14.3746373 1.0559605
2010 2308.5 1382988.0 NA Styria - Vienna group difference -2.8600459 1.6846330
2010 2322.0 1598931.0 NA Vienna direct 17.2346832 1.1871171
2010 2549.5 1361377.0 NA Lower Austria - Styria group difference -0.5310145 1.2602200
2010 2550.0 1294332.5 NA Styria - Upper Austria group difference 3.4848639 1.6332932
2010 2563.0 1577320.0 NA Lower Austria - Vienna group difference -3.3910604 1.9532508
2010 2563.5 1510275.5 NA Upper Austria - Vienna group difference -6.3449098 1.4178877
2010 2804.0 1555709.0 NA Lower Austria direct 13.8436228 1.1256995
2010 2804.5 1488664.5 NA Lower Austria - Upper Austria group difference 2.9538494 1.9538722
2010 2805.0 1421620.0 NA Upper Austria direct 10.8897734 0.9377872
2010 7267.0 3979571.7 male NA direct 12.0266000 0.3524528
2010 7413.5 4091111.0 male - female NA group difference -4.7069081 0.3539490
2010 7560.0 4202650.3 female NA direct 16.7335081 0.4706546
2010 14827.0 8182222.0 NA NA direct 14.4442182 0.3755538

The resulting output table contains 49 rows. 12 rows for all the direct estimators

\[n_\text{periods}\cdot(n_\text{regions} + n_\text{genders} + 1) = 1\cdot(9 + 2 + 1) = 12,\]

and another 37 for all the differences within the variable "gender" and "region" seperately. Variable "gender" has 2 unique values (unique(dat2$gender)) resulting in 1 difference, ~ gender = "male" - gender = "female" and variable "region" has 9 unique values (unique(dat2$region)) resulting in

\[8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = \sum\limits_{1=1}^{9-1}i = 36\]

estimates. Thus the output contains 1 + 36 = 37 estimates with respect to group differences.

If a combintaion of grouping variables is used in group and group.diff = TRUE then differences between combinations will only be calculated if one of the grouping variables differs. For example the difference between the following groups would be calculated

The difference between gender = "female" & region = "Vienna" and gender = "male" & region = "Salzburg" however would not be calculated.

Thus this leads to

\[2\cdot(\sum\limits_{1=1}^{9-1}i) + 9\cdot1 = 81\]

results with respect to the differences. The Output contains an additional column estimate_type and

povertyRates <- calc.stError(dat2, var = "povertyRisk", fun = weightedRatio, 
                             group = list(c("gender", "region")),
                             group.diff = TRUE)
povertyRates$Estimates[,.N,by=.(estimate_type)]
estimate_type N
direct 19
group difference 81

Differences between survey periods

Differences of estimates between periods can be calculated using parameter period.diff. period.diff expects a character vector (if not NULL) specifying for which periods the differences should be calcualed for. The inputs should be specified in the form "period2" - "period1".

povertyRates <- calc.stError(dat_boot_calib[year>2013], var = "povertyRisk", fun = weightedRatio, 
                             period.diff = c("2017 - 2016", "2016 - 2015", "2015 - 2014"))
povertyRates$Estimates
year n N estimate_type val_povertyRisk stE_povertyRisk
2014 14827 8182222 direct 15.1455601 0.4954098
2015 14827 8182222 direct 15.5364014 0.5456595
2015-2014 14827 8182222 period difference 0.3908413 0.3505833
2016 14827 8182222 direct 15.0831502 0.5211549
2016-2015 14827 8182222 period difference -0.4532512 0.3818030
2017 14827 8182222 direct 15.4201916 0.3757101
2017-2016 14827 8182222 period difference 0.3370414 0.4140711

If additional grouping variables are supplied to calc.stError() die differences across periods are also carried out for all variables in group.

povertyRates <- calc.stError(dat_boot_calib[year>2013], var = "povertyRisk", fun = weightedRatio, 
                             group = "gender",
                             period.diff = c("2017 - 2016", "2016 - 2015", "2015 - 2014"))
povertyRates$Estimates
year n N gender estimate_type val_povertyRisk stE_povertyRisk
2014 7267 3979572 male direct 14.5035068 0.6086880
2014 7560 4202650 female direct 15.7535328 0.4769638
2014 14827 8182222 NA direct 15.1455601 0.4954098
2015 7267 3979572 male direct 15.1228904 0.6391846
2015 7560 4202650 female direct 15.9279630 0.5250614
2015 14827 8182222 NA direct 15.5364014 0.5456595
2015-2014 7267 3979572 male period difference 0.6193836 0.3561700
2015-2014 7560 4202650 female period difference 0.1744301 0.3658346
2015-2014 14827 8182222 NA period difference 0.3908413 0.3505833
2016 7267 3979572 male direct 14.5796824 0.5975064
2016 7560 4202650 female direct 15.5598937 0.5005551
2016 14827 8182222 NA direct 15.0831502 0.5211549
2016-2015 7267 3979572 male period difference -0.5432080 0.3532349
2016-2015 7560 4202650 female period difference -0.3680693 0.4613847
2016-2015 14827 8182222 NA period difference -0.4532512 0.3818030
2017 7267 3979572 male direct 14.9481591 0.3562568
2017 7560 4202650 female direct 15.8671684 0.4535615
2017 14827 8182222 NA direct 15.4201916 0.3757101
2017-2016 7267 3979572 male period difference 0.3684767 0.4827706
2017-2016 7560 4202650 female period difference 0.3072748 0.4544777
2017-2016 14827 8182222 NA period difference 0.3370414 0.4140711

Averages across periods

With parameter period.mean averages across periods are calculated additional. The parameter accepts only odd integer values. The resulting table will contain the direct estimates as well as rolling averages of length period.mean.

povertyRates <- calc.stError(dat_boot_calib[year>2013], var = "povertyRisk", fun = weightedRatio, 
                             period.mean = 3)
povertyRates$Estimates
year n N estimate_type val_povertyRisk stE_povertyRisk
2014 14827 8182222 direct 15.14556 0.4954098
2014_2015_2016 14827 8182222 period average 15.25504 0.4615078
2015 14827 8182222 direct 15.53640 0.5456595
2015_2016_2017 14827 8182222 period average 15.34658 0.4211127
2016 14827 8182222 direct 15.08315 0.5211549
2017 14827 8182222 direct 15.42019 0.3757101

if in addition the parameters group and/or period.diff are specified then differences and groupings of averages will be calculated.

povertyRates <- calc.stError(dat_boot_calib[year>2013], var = "povertyRisk", fun = weightedRatio, 
                             period.mean = 3, period.diff = "2016 - 2015",
                             group = "gender")
povertyRates$Estimates
year n N gender estimate_type val_povertyRisk stE_povertyRisk
2014 7267 3979572 male direct 14.5035068 0.6086880
2014 7560 4202650 female direct 15.7535328 0.4769638
2014 14827 8182222 NA direct 15.1455601 0.4954098
2014_2015_2016 7267 3979572 male period average 14.7353599 0.5710507
2014_2015_2016 7560 4202650 female period average 15.7471298 0.4185309
2014_2015_2016 14827 8182222 NA period average 15.2550372 0.4615078
2015 7267 3979572 male direct 15.1228904 0.6391846
2015 7560 4202650 female direct 15.9279630 0.5250614
2015 14827 8182222 NA direct 15.5364014 0.5456595
2015_2016_2017 7267 3979572 male period average 14.8835773 0.4784864
2015_2016_2017 7560 4202650 female period average 15.7850084 0.3963737
2015_2016_2017 14827 8182222 NA period average 15.3465811 0.4211127
2016 7267 3979572 male direct 14.5796824 0.5975064
2016 7560 4202650 female direct 15.5598937 0.5005551
2016 14827 8182222 NA direct 15.0831502 0.5211549
2016-2015 7267 3979572 male period difference -0.5432080 0.3532349
2016-2015 7560 4202650 female period difference -0.3680693 0.4613847
2016-2015 14827 8182222 NA period difference -0.4532512 0.3818030
2016-2015_mean 7267 3979572 male difference between period averages 0.1482174 0.1669658
2016-2015_mean 7560 4202650 female difference between period averages 0.0378785 0.2406335
2016-2015_mean 14827 8182222 NA difference between period averages 0.0915438 0.1818219
2017 7267 3979572 male direct 14.9481591 0.3562568
2017 7560 4202650 female direct 15.8671684 0.4535615
2017 14827 8182222 NA direct 15.4201916 0.3757101